
System Engineering over time

Notes on Model Based Engineering

Johan Lukkien

Disclaimer

“In a system consisting of several components, it is essential that
such components are jointly designed and tuned to serve the
overall system goals. Although accepted in theory it is rarely

done in practice” (PhD thesis Creusen)

• dependencies

• standards

• interfaces

• evolution

• models

Theory and practice

• Theory: run the V down and up
again and your system is ready to use

• Practice: If this ever happens, then only once . After the first version,
evolution is the normal mode of operation.

• Hence, concentrate on aspects of evolution, and define engineering
processes and artifacts accordingly as evolution steps of an existing system.

• Questions:

– which evolution steps, which categories of steps are typical?

– what are typical problems encountered?

– co-evolution, with multiple parts and parties involved

– include evolution of engineering processes

V? Which V?

Engineering workflows

• New insights, new ICT techniques, new tools, new methodologies have a
deep impact on engineering workflows

• This is often not recognized at first, and is a root cause for slow (or no)
adoption

– the workflow is not adjusted resulting in people arguing that the new insights
do not apply

– the workforce is not trained properly

• Questions:

– what is the actual workflow, and what is the aimed-for one, and why?

– is there a ‘holistic’ view on the entire process?

– how is the transition plan?

Component-based system

Software

(Computer)
Hardware

Plant

evolution

Component evolution, result of
• technology progress (versions)
• replacement: end-of-life/-

manufacturing

System evolution, result of
• upgrade

• configuration change
• component evolution and

implied dependencies

• new generation, new components
• instances in a product family

Set of models
for each
component

Models target
aspects

consistency under evolution by
extraction (abstraction) / generation (refinement)

• Represent components, and
system (partly) in the virtual
world (virtual prototyping)

• Identify variation points and
features supporting
architecture variability
(product families)

• Analyze component and
system properties

analysis
construction

Component

• In software, it is some object that conforms to a component model
(CORBA, DCOM, ….)

– however, not very successful in developing a design discipline for software

– … while composing components in the sense of ‘adding subsystems together’
has been very successful

• We consider a component as an element of the implementation domain:
any unit of deployment with well-defined interfaces

• Models give views on these components

• The mapping: component-model(s) depends on the model transformation,
and, especially for software, it is not always 1-1 as the picture suggests

Models of components

• developed

– during design

– from implementation

static dynamic

descriptive structural and
behavioral properties

describe (evaluate)
properties of executions

executable sufficient information
to construct the
component

study execution details
dependent on inputs

compilation
macro expansion

linking models
available?
(e.g. OS libs)

performance
evaluation

performance
evaluation
based on models
plus perhaps
simulation

OS

Generation Abstraction

Challenges

• How to use modeling, simulation, transformation, specialization
techniques to support the process of evolution?

– Which representations help?

• Can we measure the improvements?

– define metrics, and measurements

– zero measurement, measure where the problems are

Dependencies
• Parnas’ principles:

– The developer of a software component must provide the intended user with
all the information needed to make effective use of the services provided by
the component, and should provide no other information.

– The implementor of a software component must be provided with all the
information necessary to carry out the given responsibilities assigned to the
component, and should be provided with no other information.

• Rather successful for functional properties, to separate specification and
implementation

• However, difficult to evolve

– knowledge of the interface of a component may be laid down in control
structures or untested assumptions of a dependent component

• Very difficult for emergent properties (performance, dependability, …)

– brittle, non-continuous

– needs information about emergent properties at interfaces

What (which models) to maintain?
• Models that are correct abstractions of the actual components

– inevitably, depending on (assuming) a context, i.e., other models

• e.g. OS version, scheduling policies, hardware details, but also input characteristics

– have been abstracted from the actual component (and verified as such), or
from verified models of that and other components

– or can be mechanically transformed into the component

• Verification paths for such models

• Models developed during requirement analysis are often superseded by
later choices and insights

• For dynamic, executable models

– input traces

– run traces

– maintain interfaces (APIs, events)

The use of simulation
• Classical, during analysis

– Analyze requirements

– Evaluate, predict properties of the
system beforehand

• obtain configuration information

– Early feedback

• More recently, during construction

– Analyze the actual system, the actual
components, understand the operation

• look from the inside

– obtain test cases, traces

– perform dangerous or expensive test
cases virtually

– fault insertion

– … improve the entire process

from partial
simulation
to co-simulation

from co-simulation
to system simulation
and mixed simulation

Maintaining interfaces

• Admits to ‘cut’ along an interface (or set of interfaces)
– simulate one half, retain the other half

PC

Hardware abstraction layer

Third-party software ‘drivers’

Ethercat with
proprietary data format

Robot arm electronics:
Hardware modules with
third-party firmware, local control

X2

X1

x1 interface

x2 interface

Controlling software

Example

Simulation setup patterns

• Embed models (of the plant) into a special
hardware setup to generate the right signals
(x2 interface).

• Embed models into the runtime environment
of a tool (e.g. Matlab).
Need to connect to the ‘dangling’ interfaces of
the remainder of the system (x1 interface).

• Generate a runnable component that
represents the model, with a standardized
interface, e.g. FMI.
Need to connect to the dangling interfaces.

interface of
control software

interface of a
simulator

• advance time (step)
• observe (internal) state
• adapt state
• pass events
• generate events

ADAPTER

• data format differences
• resolve control flow, may need to

store some state
• manage real time and simulation

time

Simulator Coordinator

• connects to control software
(data format, control flow)

• lives in real-time (although…)

Concluding
• We need to design for evolution

• Models are first class citizens
– models increase the abstraction level away from coding

– models are produced during design but also extracted from the product

– management
• models more diverse, more expressive than just code

• scalability requires automation in handling

• consistency

• Traditional concerns of large code bases will move to model repositories
– e.g. how to refactor models?

• Flexible simulation setups
– combine / integrate simulators, patterns

– need automation: e.g. generate based on interface specifications

solution (design)
space

refinement abstraction

